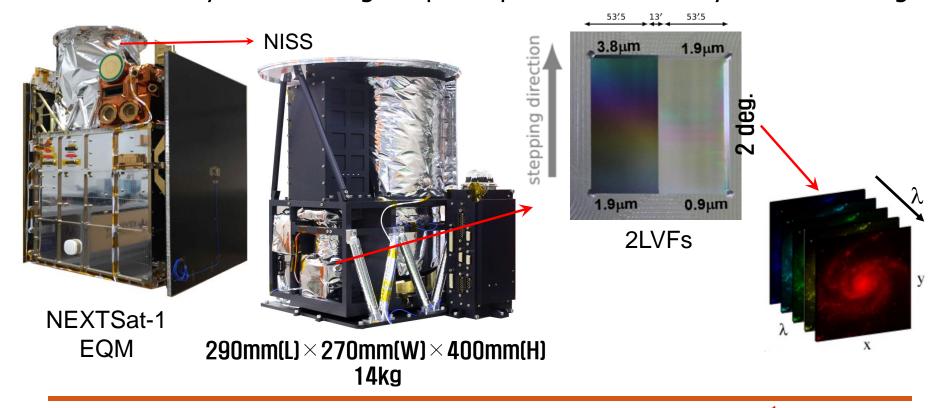
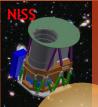
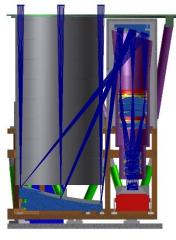

Infrared Spectro-Photometric Survey in Space - Focusing on NISS & SPHEREX -


Woong—Seob Jeong Space Astronomy Group, KASI



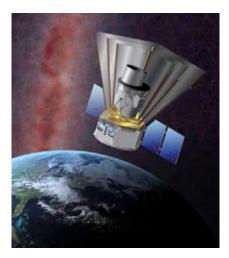
NISS: Near-IR Imaging Spectrometer onboard NEXTSat-1 (2017)

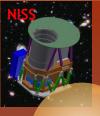
- Wavelength range: $0.9 \sim 3.8 \mu m \rightarrow 2.5 \mu m (R \sim 20)$
- Array format: 1024 x 1024, FoV: ~2 deg. X 2 deg. (15"resol.)
- 15cm aperture, Imaging & Low-Resolution Spectroscopy (R~20),
 Sensitivity ~17 AB mag. − spectrophotometric survey area ~150 deg²



Full Development

- Optics
 - Optical design & analysis
 - Mirrors & lens
- Opto-mechanics, Structure
 - Mechanical design & analysis
 - Barrel, structure
 - Passive & active cooling system
- Electronics
 - Operation of IR sensor
 - Data transfer
- Calibration & Operation
 - Test, Cal., DR
 - ⊙ Operation: ~2 yrs

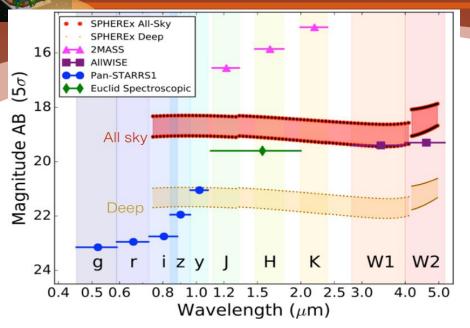



SPHEREX, NASA SMEX Mission (2020)

- Spectro-PHotometer for the Extragalactic structure, Reionization and ices Explorer: under Phase-A Study
- Spectro-photometric all-sky survey: 1.4B spectral catalog (0.75 \sim 4.8 μ m, R=40 \sim 150)
- Participating Institutes (PI: Jamie Bock): International Collaboration
 - JPL: management, thermal system, readout electronics, QA
 - Caltech: Instrument Development, I&T, Data Pipeline
 - Ball Aerospace & Technologies Corporation: spacecraft
 - ASU, Caltech, Harvard, IfA, JPL, OSU, UC Irvine: Science


SPHEREx is the upgraded mission of the NISS

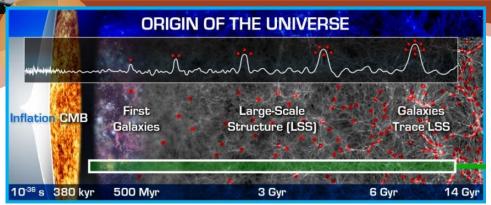
NISS vs. SPHEREX



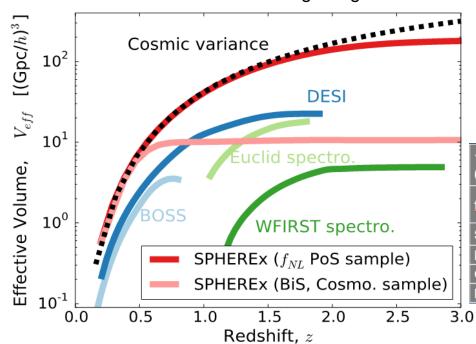
	NISS	SPHEREX
FoV	2x2 deg	3.5x7 deg
Spectral Coverage	0.9-3.8µm	0.75-5 μ m
Spectral Resolution	20	40-140
Spatial Resolution	15 arcsec	6 arsec
Survey Area	~150 sq. deg.	All Sky
Sensitivity	17 AB mag.	19 AB mag. (deep fields: x30)

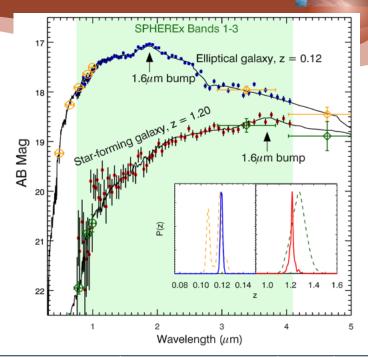
SPHEREx: All-Sky Legacy Archive

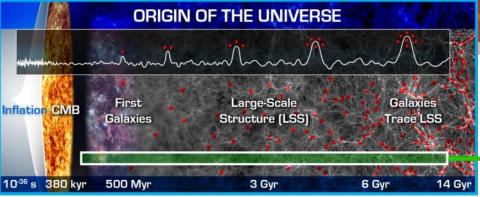
Legacy Science Opportunities: A Few Example



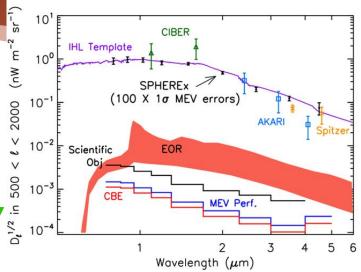
- High S/N spectrum for every 2MASS source
- Solid detection of faintest WISE sources
- Catalogs ideal for GMT/JWST observations
- Redshifts for other surveys (e.g., eRosita X-Ray survey)
- Photo baselines for wide-field transient survey
- Mapping 3D distribution of Galactic ices

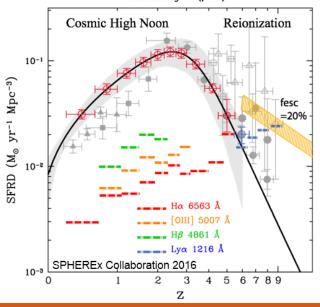

Obiash	-		ortuinties. A re		Defener	
Object	# Source	es	Legacy Science		Reference	
Detected galaxies	1.4 billion		Properties of distant and I vily obscured galaxies			
Galaxies s(z)/(1+z) < 0.03	120 million		Study (H, CO, O, S, $\rm H_2O$) line and PAH emission by galaxy type. Explore galaxy and AGN life cycle		Simulation ba sed on COSM OS and Pan-S TARRS	
Galaxies s(z)/(1+z) < 0.003	9.8 million		Cross check of Euclid photo-z . Measure dynamics of group s and map filaments.		7,44,6	
QS0s	>1.5 million		Understand QSO lifecycle, en vironment and taxonomy		Ross et al. (2	
QSOs at z > 7	0-300		Determine if early QSOs exist . Follow-up spectroscopy pro bes EOR through Lya forest		013) plus sim ulations	
Clusters with ≥ 5 members	25,000		Redshifts for all eRosita clust ers. Viral masses and merger dynamics		Geach et al., 2011, SDSS c ounts	
X-ray source characterization	>100,000	In conjunction with eROSITA, detect X-ray source SEDs (e.g., AGNs) and their spectroscopic redshifts		Pap	orkshop White aper (Doré et al., 016)	
Missing baryon studies	>10,000	In conjunction with CMB experiments, measure the kSZ signal of galaxy groups and clusters			Doré et al. (2016) Ferraro et al. (2016)	
Exoplanet characterization	>1000	Determine precise radii for exoplanets from host star studies (§E.9.1.2)			Doré et al. (2016)	
Deuterated PAH search	~100	Probe and possibly map deuterated PAHs; complete inventory of D in local ISM			Doré et al. (2016) Doney et al. (2015)	
Lowest metallicity stars	~1000	out the Galaxy by their IR sig- natures; and map their distribution			Doré et al. (2016)	
Asteroids and comets	10,000/ 100	Spect	rally classify numerous oids; CO/CO ₂ ratio in comets	Dor	Ooré et al. (2016)	
Nearby, resolved galaxies	~100	Spectrally image galaxies to trace Do stellar populations, star formation, etc.			ré et al. (2016)	



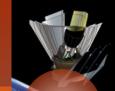


1σ errors, statistical	SPHEREX (MEV)			Euclid	Current
(systematics)	Pos	Bis	PoS+BiS	(GC)	Current
f	0.86	0.23	0.15	5.59	5.0
f _{NL}	(0.15)	(0.05)	(0.03)	5.59	5.0
Spectral Index n _s (x 10 ⁻³)	2.6	1.5	1.4	2.6	4.0
Running α _s (x10 ⁻³)	1.0	1.0	0.49	1.1	7.5
Curvature Ω _k (x10 ⁻⁴)	7.6	9.5	6.6	7.0	20
Dark Energy FOM	381	NC	NC	309	14

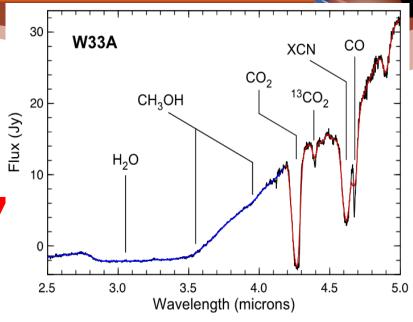

SPHEREx: Galaxy Evolution

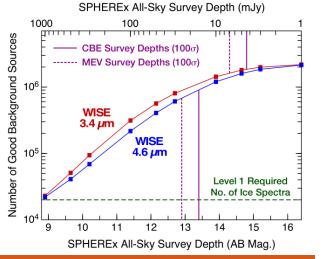


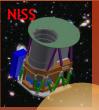
Time Since Big Bang


- Expected Lyman EOR features, with SNR >100 on the RMS fluctuations
- Faint EOR signal using distinctive spectral features and cross-correlations.
- Minimum EOR signal
- Line Intensity Mapping: Amplitude of linear clustering in multiple lines

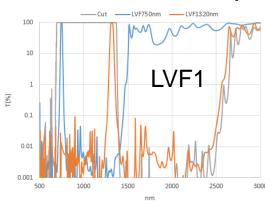
SPHEREx: Ice Survey

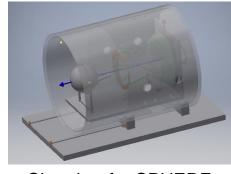



Time Since Big Bang

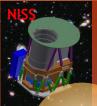

Stages of Star Formation

Abundance and composition of biogenic ices (H₂O, CO₂, CO, XCN and CH₃OH) in dense molecular clouds and protoplanetary disks





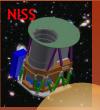
Hardware Contribution


- Hardware for electronics
 - 6 FPAs (H2RG array) + 6 sidecars
 - Test of detectors & screening
- Hardware for optics
 - Baffle tube structure for wide-field telescope
- Optical Filters
 - 4 Linear Variable Filters
 - Dichroic filters

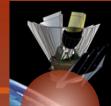
Chamber for SPHEREx

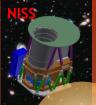
 Ground support equipment for characterizing the instrument (cryo. Chamber, integrating sphere, ground station electronics)

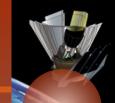
Manpower Contribution

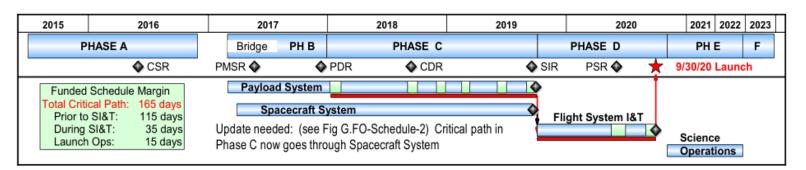


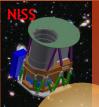
- Contribution of the works
 - Software Data reduction pipelines
 - Software for analysis tools → to be experienced through NISS
- Science & Operation (launch of NISS 2017)
 - Synergy with other space missions (e.g., eROSITA, JWST, Euclid)
 - Follow-up targets for Ground telescopes (e.g., GMT, LSST)
 - Collaboration with other Groups at KASI: Instrument group in CfLT, Cosmology group, Galaxy evolution group, ...
 - Collaboration with SNU, KHU, KBNU & KIAS



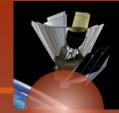



SPHEREx Science Cases (Korea)

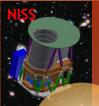

- Cosmology, Extragalactic, Galactic sciences
- Galactic Sciences
 - Ice Features from YSOs & IRDCs
 - SNRs
 - ZL spectra from Near- to Mid-IR
 - Moving objects: DEEP-South
- Extragalactic Sciences
 - SF properties of near-by galaxies (PAH, Pa, Br lines, ...)
 - Near-by and high-z AGNs
 - Properties of High-z emission line galaxies
 - CIRB study in NEP and SEP region (AKARI Deep Fields)
- More science cases from astronomical community



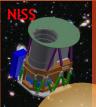
Phase Studies



- Phase-A study (2016): Conceptual design
- Development Phase (2017 ~ 2019)
 - Detailed design, Assembly & preparation of DR
 - Constructs test calibration facilities
- Operational Phase (2020 ~ 2022)
 - Calibration of Instruments & Space Environment Test
 - All-sky survey & evaluation of PV data
- Science Phase (2023 ~ 2024 -2025)
 - Research activities with legacy science data
 - Revision of DR for Science Enhancement Options (SEOs)



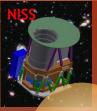
Extragalactic Deep Fields


- AKARI Deep Fields → SPHEREx, Euclid
 - \odot NEP \sim 5.4 sq. deg. (wide)
 - Near- to MIR
 - NEP Deep & Monitoring field
 - NEP Wide
 - **①**...
 - \odot SEP ~12 sq. deg.
 - FIR
 - **①**...

Science Subjects @ KASI

- Local galaxies
 - Barred galaxies (SFGs) Spitzer S4G
 - Local Dusty SFGs (+ galaxy cluster)
- High-z galaxies: DOGs, ULIRGs, SMGs, AGNs ...
 - Dust-Obscured Galaxies @ z~ 1-2
 - High-z candidates @ z>2
- CIRB (unresolved)
 - NIR & FIR Submm.

Summary



ONISS (2017)

- Technical demonstration: imaging spectroscopy
- Imaging spectroscopic survey: Nearby galaxies, starforming regions, low-background regions ...
- Operation from 2017 (2-yr lifetime)

SPHEREx (2020)

- Galactic / Extragalactic Sciences
- Synergy with other Facilities (KMTNet, GMT ...)
- More science cases from Korean community

Discussions

- 전천 적외선 영상분광 자료 외부은하 활용
 - ⊙ SPHEREx 최종 선정 시 과학활용 준비
 - SPHEREx 메인 주제들 이외에 가능한 외부은하 연구들에 대한 논의가 필요